Chinese Chemical Letters Vol. 16, No. 1, pp 1-3, 2005 http://www.imm.ac.cn/journal/ccl.html

Synthesis of Tetrahydropyridinyltriazolothiadiazines as Possible Muscarinic Agonists

Guo Qiang HU¹*, Wen Long HUANG², Hai WANG³

¹Medical College of Henan Unversity, Kaifeng 475001 ² China Pharmaceutical University, Nanjing 210009 ³Academy of Military Medical Sciences, Beijing 100850

Abstract: 4-Amino-5-(pyridin-3-yl)-4*H*-1,2,4-triazole-3-thiol **1** were condensed with 2-bromo-1-(substituted phenyl)ethanone to give pyridinyltriazolothiadiazines **2a~c**, which were quaternarized with methyl iodide and oxidized with 30 % hydrogen peroxide to afford the corresponding methyl pyridinium salts **3a~c** and pyridine-1-oxides **4a~c**, respectively. The reduction of compounds **3** and **4** with NaBH₄ in methanol produced the target compounds 1-methyl-1, 2, 5, 6-tetrahydropyridin-3yl)-6-aryl-*s*-triazolothiadiazines **5a~c** and 3-(1-hydroxyl-1, 2, 5, 6-tetrahydropyridin -3-yl)-6-aryl*s*-triazolothiadiazines **6a~c**, respectively. The endothelium vascular relaxing activity of the target compounds was screened.

Keywords: Tetrahydropyridine, triazolothiadiazine, muscarinic agonist, vascular activity.

Recently, the increasing demand for effective treatment of cardiovascular diseases (CD), such as hypertension, heart failure, hypercholesterolemia, atherosclerosis, is becoming urgent task. The researches in therapeutics for CD focus on the modification of the classical muscarinic (M) receptor agonists, such arecoline as a naturally occurring alkaloid and unselective M receptor agonist, which could mediate endothelium-dependent vascular relaxation by releasing nitric oxide. Chemically, arecoline possess a 1,2,5,6-tetrahydropyridine ring and an unstable ester moiety, which has been replaced with the stable five-numbered heterocyclic rings in order to improve the pharmacological and pharmacokinetic properties^{1,2}. Meanwhile, some arecoline derivatives containing oxadiazoline have been reported in our previous papers^{3, 4}. We reported herein the synthesis of other new arecoline derivatives containing triazolothiadiazine ring in order to obtain potent vascular relaxing agonists, taking direct effect on endothelium target for acetylcholide⁵ for the treatment of the above diseases (**Scheme 1**).

Synthesis of aryl substituted pyridinyltriazolothiadiazines $2a \sim e$ were achieved from pyridinyltriazole 1 with the appropriate 2-bromo-1-(substituted phenyl)ethanones in refluxing ethnol in yields 78, 81, 67, 75, and 53 %, respectively. Subsequent quaternization of compounds $2a \sim e$ with methyl iodide (3.0 eq.) in refluxing acetone for 24 hours and oxidation with 30 % hydrogen peroxide (1.5 eq.) in refluxing acetic acid for

^{*} E-mail: hgqxy@sina.com.cn

Ar: **a**, C₆H₅; **b**, *p*-CH₃O-C₆H₄; **c**, *p*-CH₃-C₆H₄; **d**, *p*-Cl-C₆H₄; **e**, *p*-O₂N-C₆H₄

Reagents and conditions: i, 2-bromo-1-(substituted phenyl)ethanones, EtOH, reflux; ii, CH₃I, acetone, reflux; iii, H_2O_2 , Ac_2O , reflux; iv, NaBH₄, MeOH, H_2O , $0\sim60^{\circ}C$

3 hours afforded the corresponding methylpyridinium salts $3a \sim e$ and pyridine-1-oxides $4a \sim e$, respectively. The reduction of compounds $3a \sim e$ and $4a \sim e$ with NaBH₄ (2.5 eq.) in methanol-water produced the tetrahydropyridine compounds 3-(1-methyl-1, 2, 5, 6-tetrahydropyridin-3-yl)-6-aryl-s-triazolothiadiazines $5a \sim c$ and 3-(1-hydroxyl-1, 2, 5, 6-tetrahy-pyridin-3-yl)-6-aryl-s-triazolothiadiazines $6a \sim c$, respectively. The *in vitro* preliminary biological tests showed that the vascular relaxation effects on isolated endothelial cells are 21, 28, 22, 11, 25 for compounds 5a, b, c, d, e and 27, 33, 24, 10, 29 % for compounds 6a, b, c, d, e, respectively. The vascular relaxing activity of the title compounds, except 5d and 6d, are comparable to that of arecoline (36.5 %).

The structures of the target compounds were confirmed by elemental analysis (EA), ¹H NMR, IR and MS⁶.

Acknowledgment

This project was supported by the State Basic Research and Development Project (No. G 1998051112) and the Science Foundation of Henan University (XK02041).

References and Notes

- 1. K. M. Ejner, B. Berith, Drugs Fut., 1995, 25 (1), 37.
- 2. M. H. Jung, J. M. Park, I. Y. C. Lee, M. Ahn, J. Heterocyclic Chem., 2003, 40, 37.
- 3. G. Q. Hu, W. L. Huang, H. B. Zhang, H. Wang, Chin. Chem. Lett., 2002, 13 (9), 814.
- 4. G. Q. Hu, W. L. Huang, H. B. Zhang, H. Wang, Chin. J. Chem., 2002, 20, 1115.
- 5. L. M. Shan, H. Wang, Life Sci., 2002, 70, 1285.
- 5a: yield 57%, mp 161~162°C. IR (KBr) v: 3217, 1632, 1485, 1261 cm⁻¹; ¹H NMR (DMSO-d₆, δ ppm): 8.12~7.68 (m, 5H, Ph-H), 6.64 (d, 2H, H-4', J=3.5 Hz,), 4.26 (s, 2H, CH₂), 3.45 (brs, 2H, H-2'), 2.66 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.43 (s, 3H, NCH₃); EIS-MS (70 eV) m/z:

312 (M+H). Anal. (Calcd. for C₁₆H₁₇N₅S): C 61.71, H 5.50, N 22.49; Found: C 61.84, H 5.48, N 22.64.

5b: yield 62%, mp 156~157°C. IR (KBr) v: 3205, 1616, 1556, 1265 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.04~7.53 (m, 4H, Ph-H), 6.53 (br, 2H, H-4'), 4.18 (s, 2H, CH₂), 3.87 (s, 3H, CH₃O), 3.38 (brs, 2H, H'-2), 2.82 (brs, 2H, H-6'), 2.57 (brs, 2H, H-5'), 2.44 (s, 3H, NCH₃); EIS-MS (70 eV) *m/z*: 342 (M+H). Anal. (Calcd. for C₁₇H₁₉N₅OS): C 59.80, H 5.61, N 20.51; Found: C 60.12, H 5.71, N 20.66.

5c: yield 43%, mp 141~142°C. IR (KBr) v: 3054, 1614, 1563, 1260 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.17~7.43 (m, 4H, Ph-H), 6.58 (d, 2H, *J*=3.2 Hz, H-4'), 4.24 (s, 2H, CH₂), 3.37 (brs, 2H, H-2'), 2.74 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.43 (s, 3H, NCH₃), 2.32 (s, 3H, CH₃); EIS-MS (70 eV) *m/z*: 326 (M+H). Anal. (Calcd. for C₁₇H₁₉N₅S): C 62.74, H 5.88, N 21.52; Found: C 62.88, H 5.67, N 21.48

5d: yield 22%, mp 160~162°C. IR (KBr) v: 3007, 1607, 1465, 1268 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.20~7.38 (m, 4H, Ph-H), 6.54 (brs, 2H, H-4'), 4.24 (s, 2H, CH₂), 3.42 (brs, 2H, H-2'), 2.76 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.43 (s, 3H, NCH₃); EIS-MS (70 eV) *m/z*: 345 (M⁺). Anal. (Calcd. for C₁₆H₁₆ClN₅S): C 55.56, H 4.66, N 20.25; Found: C 55.48, H 4.54, N 20.33.

5e: yield 12%, mp 182~184°C. IR (KBr) v: 2996, 1603, 1552, 1260 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.32~7.74 (m, 4H, Ph-H), 6.65 (br, 2H, H-4'), 4.26 (s, 2H, CH₂), 3.38 (brs, 2H, H-2'), 2.76 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.38 (s, 3H, NCH₃); EIS-MS (70 eV) *m/z*: 357 (M+H). Anal. (Calcd. for C₁₆H₁₆N₆O₂S): C 53.92, H 5.88, N 21.52; Found: C54.07, H 5.78, N 21.74.

6a: yield 72%, mp 174~176°C. IR (KBr) v: 3345, 1617, 1557, 1264 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.16~7.82 (m, 5H, Ph-H), 6.81 (d, 2H, *J*=3.2 Hz, H-4'), 4.08 (s, 2H, CH₂), 3.37 (brs, 2H, H-2'), 2.86~2.66 (m, 3H, H-6' and OH), 2.53 (brs, 2H, H-5'); EIS-MS (70 eV) *m/z*: 314 (M+H). Anal. (Calcd. for C₁₅H₁₅N₅OS): C 57.49, H 4.82, N 22.35; Found: C 57.61, H 4.55, N 22.31.

6b: yield 63%, mp 168~170°C. IR (KBr) v: 3362, 1624, 1602, 1265 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.04~7.63 (m, 4H, Ph-H), 6.72 (d, 2H, *J*=3.6 Hz, H-4'), 4.12 (s, 2H, CH₂), 3.96 (s, 3H, CH₃O), 3.37 (brs, 2H, H-2'), 2.84~2.72 (m, 3H, H-6' and OH), 2.55 (brs, 2H, H-5'); EIS-MS (70ev) *m/z*: 344 (M+H). Anal. (Calcd. for C₁₆H₁₇N₅O₂S): C 55.96, H 4.99, N 20.39; Found: C 56.12, H 4.87, N 20.43.

6c: yield 48%, mp 152~153°C. IR (KBr) v: 3417, 1606, 1585, 1266 cm⁻¹; ¹H NMR (DMSO-*d*₆, δ ppm): 7.87~7.34 (m, 4H, Ph-H), 6.68 (d, 2H, *J*=3.6 Hz, H-4'), 4.17 (s, 2H, CH₂), 3.35 (brs, 2H, H-2'), 3.15~2.74 (m, 3H, H-6' and OH), 2.55 (brs, 2H, H-5'), 2.43 (s, 3H, CH₃); EIS-MS (70 eV) *m/z*: 328 (M+H). Anal. (Calcd. for C₁₆H₁₇N₅OS): C 58.70, H 5.23, N 21.39; Found: C 58.82, H 5.26, N 21.44.

6d: yield 35%, mp 160~162°C. IR (KBr) v: 3437, 1624, 1557, 1265 cm⁻¹; ¹H NMR (DMSO- d_{δ} , δ ppm): 8.26~7.53 (m, 4H, Ph-H), 7.03 (d, *J*=3.5 Hz, 2H, H-4'), 4.21 (s, 2H, CH₂), 3.35 (brs, 2H, H-2'), 2.87~2.68 (m, 3H, H-6' and OH), 2.53 (brs, 2H, H-5'); EIS-MS (70 eV) *m/z*: 348 (M+H). Anal. (Calcd. for C₁₅H₁₄ClN₅OS): C 51.80, H 4.06, N 20.13; Found: C 51.88, H 4.32, N 20.32.

6e: yield 17%, mp 188~190°C. IR (KBr) v: 3345, 1617, 1485, 1264 cm⁻¹; ¹H NMR (DMSO- d_6 , δ ppm): 8.17~7.82 (m, 4H, Ph-H), 6.74 (d, 2H, *J*=3 Hz, H-4'), 4.15 (s, 2H, CH₂), 3.43 (brs, 2H, H-2'), 2.85~2.63 (m, 3H, H-6' and OH), 2.55 (brs, H, H-5'); EIS-MS (70 eV) *m/z*: 359 (M+H). Anal. (Calcd. for C₁₅H₁₄N₅O₃S): C 50.27, H 3.94, N 23.45; Found: C50.41, H 4.12.48, N 23.60.

Received 18 November, 2003