Synthesis of Tetrahydropyridinyltriazolothiadiazines as Possible Muscarinic Agonists

Guo Qiang $\mathrm{HU}^{1 *}$, Wen Long HUANG ${ }^{2}$, Hai WANG ${ }^{3}$
${ }^{1}$ Medical College of Henan Unversity, Kaifeng 475001
${ }^{2}$ China Pharmaceutical University, Nanjing 210009
${ }^{3}$ Academy of Military Medical Sciences, Beijing 100850

Abstract

Amino-5-(pyridin-3-yl)-4H-1,2,4-triazole-3-thiol 1 were condensed with 2-bromo-1(substituted phenyl)ethanone to give pyridinyltriazolothiadiazines $\mathbf{2 a} \sim \mathbf{c}$, which were quaternarized with methyl iodide and oxidized with 30% hydrogen peroxide to afford the corresponding methyl pyridinium salts $\mathbf{3 a \sim} \sim$ and pyridine-1-oxides $\mathbf{4 a \sim} \sim$, respectively. The reduction of compounds $\mathbf{3}$ and 4 with NaBH_{4} in methanol produced the target compounds 1-methyl-1, 2, 5, 6 -tetrahydropyridin-3-yl)-6-aryl-s-triazolothiadiazines 5a~c and 3-(1-hydroxyl-1, 2, 5, 6-tetrahydropyridin -3-yl)-6-aryl-s-triazolothiadiazines $\mathbf{6 a \sim} \mathbf{c}$, respectively. The endothelium vascular relaxing activity of the target compounds was screened.

Keywords: Tetrahydropyridine, triazolothiadiazine, muscarinic agonist, vascular activity.

Recently, the increasing demand for effective treatment of cardiovascular diseases (CD), such as hypertension, heart failure, hypercholesterolemia, atherosclerosis, is becoming urgent task. The researches in therapeutics for CD focus on the modification of the classical muscarinic (M) receptor agonists, such arecoline as a naturally occurring alkaloid and unselective M receptor agonist, which could mediate endotheliumdependent vascular relaxation by releasing nitric oxide. Chemically, arecoline possess a $1,2,5,6$-tetrahydropyridine ring and an unstable ester moiety, which has been replaced with the stable five-numbered heterocyclic rings in order to improve the pharmacological and pharmacokinetic properties ${ }^{1,2}$. Meanwhile, some arecoline derivatives containing oxadiazoline have been reported in our previous papers ${ }^{3,4}$. We reported herein the synthesis of other new arecoline derivatives containing triazolothiadiazine ring in order to obtain potent vascular relaxing agonists, taking direct effect on endothelium target for acetylcholide ${ }^{5}$ for the treatment of the above diseases (Scheme 1).

Synthesis of aryl substituted pyridinyltriazolothiadiazines 2a~e were achieved from pyridinyltriazole 1 with the appropriate 2-bromo-1-(substituted phenyl)ethanones in refluxing ethnol in yields $78,81,67,75$, and 53%, respectively. Subsequent quaternization of compounds $2 \mathbf{2 a} \sim \mathbf{e}$ with methyl iodide (3.0 eq.) in refluxing acetone for 24 hours and oxidation with 30% hydrogen peroxide (1.5 eq.) in refluxing acetic acid for

[^0]
Scheme 1

Ar: a, $\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{b}, p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathbf{c}, p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathbf{d}, p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathbf{e}, p-\mathrm{O}_{2} \mathrm{~N}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
Reagents and conditions: i, 2-bromo-1-(substituted phenyl)ethanones, EtOH , reflux; ii, $\mathrm{CH}_{3} \mathrm{I}$, acetone, reflux; iii, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Ac}_{2} \mathrm{O}$, reflux; iv, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 0 \sim 60^{\circ} \mathrm{C}$

3 hours afforded the corresponding methylpyridinium salts 3a~e and pyridine-1-oxides $\mathbf{4 a \sim} \sim$, respectively. The reduction of compounds $3 \mathbf{a} \sim \mathbf{e}$ and $\mathbf{4 a \sim} \sim$ with $\mathrm{NaBH}_{4}(2.5 \mathrm{eq}$.) in methanol-water produced the tetrahydropyridine compounds 3-(1-methyl-1, 2, 5, 6-tetra-hydropyridin-3-yl)-6-aryl-s-triazolothiadiazines 5a~c and 3-(1-hydroxyl-1, 2, 5, 6-tetrahy-pyridin-3-yl)-6-aryl-s-triazolothiadiazines 6a~c, respectively. The in vitro preliminary biological tests showed that the vascular relaxation effects on isolated endothelial cells are $21,28,22,11,25$ for compounds $5 \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ and $27,33,24,10,29 \%$ for compounds $\mathbf{6 a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, \mathbf{e}, respectively. The vascular relaxing activity of the title compounds, except $\mathbf{5 d}$ and $\mathbf{6 d}$, are comparable to that of arecoline (36.5 \%).

The structures of the target compounds were confirmed by elemental analysis (EA), ${ }^{1} \mathrm{H}$ NMR, IR and MS^{6}.

Acknowledgment

This project was supported by the State Basic Research and Development Project (No. G 1998051112) and the Science Foundation of Henan University (XK02041).

References and Notes

K. M. Ejner, B. Berith, Drugs Fut., 1995, 25 (1), 37.
2. M. H. Jung, J. M. Park, I. Y. C. Lee, M. Ahn, J. Heterocyclic Chem., 2003, 40, 37.
3. G. Q. Hu, W. L. Huang, H. B. Zhang, H. Wang, Chin. Chem. Lett., 2002, 13 (9), 814.
4. G. Q. Hu, W. L. Huang, H. B. Zhang, H. Wang, Chin. J. Chem., 2002, 20, 1115.
5. L. M. Shan, H. Wang, Life Sci., 2002, 70, 1285.
6. 5a: yield $57 \%, \mathrm{mp} 161 \sim 162^{\circ} \mathrm{C}$. IR (KBr) $v: 3217,1632,1485,1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.12 \sim 7.68(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.64\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, J=3.5 \mathrm{~Hz}\right.$), $4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45$ (brs, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.66 (brs, 2H, H-6'), 2.55 (brs, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); EIS-MS (70 eV) m/z:
$312(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}\right)$: C 61.71, H 5.50, N 22.49; Found: C 61.84, H 5.48, N 22.64 .
5b: yield $62 \%, \operatorname{mp} 156 \sim 157^{\circ} \mathrm{C}$. IR (KBr) v: 3205, 1616, $1556,1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.04 \sim 7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.53\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, 3.38 (brs, 2H, H'-2), 2.82 (brs, 2H, H-6'), 2.57 (brs, 2H, H-5'), 2.44 (s, 3H, NCH ${ }_{3}$); EIS-MS $(70 \mathrm{eV}) m / z: 342(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}\right)$: C 59.80, H 5.61, N 20.51; Found: C 60.12, H 5.71, N 20.66.

5c: yield $43 \%, \operatorname{mp} 141 \sim 142^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v: 3054,1614,1563,1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.17 \sim 7.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.58$ (d, 2H, $\left.J=3.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.24$ (s, 2H, CH2), 3.37 (brs, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.74 (brs, $2 \mathrm{H}, \mathrm{H}-6^{\prime}$), 2.55 (brs, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); EIS-MS (70 eV) m/z: $326(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{~S}$): C 62.74, H 5.88, N 21.52; Found: C 62.88, H 5.67, N 21.48
5d: yield 22%, mp $160 \sim 162^{\circ} \mathrm{C}$. IR (KBr) v: $3007,1607,1465,1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.20 \sim 7.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.54$ (brs, 2H, H-4'), $4.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42$ (brs, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.76 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); EIS-MS (70 eV) m/z: 345 (${ }^{+}$). Anal. (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{~S}$): C 55.56, H 4.66, N 20.25; Found: C 55.48, H 4.54, N 20.33. 5e: yield $12 \%, \operatorname{mp} 182 \sim 184^{\circ} \mathrm{C}$. IR (KBr) v: 2996, 1603, $1552,1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): ~ 8.32 \sim 7.74(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.65\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38$ (brs, 2H, H-2'), 2.76 (brs, 2H, H-6'), 2.55 (brs, 2H, H-5'), 2.38 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); EIS-MS (70 eV) m/z: 357 $(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}\right)$: C 53.92, H 5.88, N 21.52; Found: C54.07, H 5.78, N 21.74.

6a: yield 72%, mp $174 \sim 176^{\circ} \mathrm{C}$. IR (KBr) v: 3345, 1617, 1557, $1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.16 \sim 7.82(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.81\left(\mathrm{~d}, 2 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37$ (brs, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.86 \sim 2.66\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}\right.$ and OH$), 2.53$ (brs, 2H, H-5'); EIS-MS (70 eV) m/z: 314 $(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{OS}\right)$: C 57.49, H 4.82, N 22.35; Found: C $57.61, \mathrm{H} 4.55, \mathrm{~N}$ 22.31 .

6b: yield $63 \%, \mathrm{mp} 168 \sim 170^{\circ} \mathrm{C}$. IR (KBr) v: 3362, 1624, 1602, $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.04 \sim 7.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.72\left(\mathrm{~d}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.37 (brs, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), $2.84 \sim 2.72$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}$ and OH), 2.55 (brs, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$); EIS-MS (70ev) m/z: $344(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$): C 55.96, H 4.99, N 20.39; Found: C 56.12, H 4.87, N 20.43.
6c: yield 48%, mp $152 \sim 153^{\circ} \mathrm{C}$. IR (KBr) v: $3417,1606,1585,1266 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 7.87 \sim 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.68\left(\mathrm{~d}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35$ (brs, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), $3.15 \sim 2.74$ (m, 3H, H-6' and OH), 2.55 (brs, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 2.43 (s, 3H, CH_{3}); EIS-MS $(70 \mathrm{eV}) m / z: 328(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}\right)$: C 58.70, H 5.23, N 21.39; Found: C 58.82, H 5.26, N 21.44.

6d: yield 35%, mp $160 \sim 162^{\circ} \mathrm{C}$. IR (KBr) v: 3437, 1624, 1557, $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.26 \sim 7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.03\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35$ (brs, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.87 \sim 2.68\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime} 6^{\prime}\right.$ and OH), 2.53 (brs, 2H, H-5'); EIS-MS (70 eV) m/z: 348 $(\mathrm{M}+\mathrm{H})$. Anal. (Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{OS}$): C 51.80, H 4.06, N 20.13; Found: C 51.88, H 4.32, N 20.32 .
6e: yield $17 \%, \operatorname{mp} 188 \sim 190^{\circ} \mathrm{C}$. IR (KBr) v: 3345, 1617, 1485, $1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $\delta \mathrm{ppm}): 8.17 \sim 7.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.74\left(\mathrm{~d}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.43$ (brs, 2H, H-2'), 2.85~2.63 (m, 3H, H-6' and OH), 2.55 (brs, H, H-5'); EIS-MS (70 eV) m/z: 359 (M+H). Anal. (Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$): C 50.27, H 3.94, N 23.45; Found: C50.41, H 4.12.48, N 23.60 .

Received 18 November, 2003

[^0]: * E-mail: hgqxy@sina.com.cn

